Compound Biorthogonal Wavelets on Quadrilaterals and Polar Structures
نویسندگان
چکیده
In geometric models with high-valence vertices, current subdivision wavelets may not deal with the special cases well for good visual effect of multiresolution surfaces. In this paper, we present the novel biorthogonal polar subdivision wavelets, which can efficiently perform wavelet analysis to the control nets with polar structures. The polar subdivision can generate more natural subdivision surfaces around the high-valence vertices and avoid the ripples and saddle points where Catmull-Clark subdivision may produce. Based on polar subdivision, our wavelet scheme supports special operations on the polar structures, especially suitable to models with many facets joining. For seamless fusing with Catmull-Clark subdivision wavelet, we construct the wavelets in circular and radial layers of polar structures, so can combine the subdivision wavelets smoothly for composite models formed by quadrilaterals and polar structures. The computations of wavelet analysis and synthesis are highly efficient and fully in-place. The experimental results have confirmed the stability of our proposed approach.
منابع مشابه
5-refinement Wavelets with 4-fold Symmetry
Recently √ 5-refinement hierarchical sampling has been studied and √ 5-refinement has been used for surface subdivision. Compared with other refinements such as the dyadic or quincunx refinement, √ 5-refinement has a special property that the nodes in a refined lattice form groups of five nodes with these five nodes having different x and y coordinates. This special property has been shown to b...
متن کاملOblique and Biorthogonal Multi-wavelet Bases with Fast-Filtering Algorithms
We construct oblique multi-wavelets bases which encompass the orthogonal multi-wavelets and the biorthogonal uni-wavelets of Cohen, Deaubechies and Feauveau. These oblique multi-wavelets preserve the advantages of orthogonal and biorthogonal wavelets and enhance the flexibility of wavelet theory to accommodate a wider variety of wavelet shapes and properties. Moreover, oblique multi-wavelets ca...
متن کاملNumerical Stability of Biorthogonal Wavelet Transforms
For orthogonal wavelets, the discrete wavelet and wave packet transforms and their inverses are orthogonal operators with perfect numerical stability. For biorthogonal wavelets, numerical instabilities can occur. We derive bounds for the 2-norm and average 2-norm of these transforms, including eecient numerical estimates if the number L of decomposition levels is small, as well as growth estima...
متن کاملA new view on biorthogonal spline wavelets
The biorthogonal wavelets introduced by Cohen, Daubechies, and Feauveau contain in particular compactly supported biorthogonal spline wavelets with compactly supported duals. We present a new approach for the construction of compactly supported spline wavelets, which is entirely based on properties of splines in the time domain. We are able to characterize a large class of such wavelets which c...
متن کاملConstruction of compactly supported biorthogonal wavelets
This paper presents a construction of compactly supported biorthogonal spline wavelets in L2(IR ). In particular, a concrete method for the construction of bivariate compactly supported biorthogonal wavelets from box splines of increasing smoothness is provided. Several examples are given to illustrate the method. Key-Words:multivariate biorthogonal wavelets, multivariate wavelets, box splines,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Algorithms
دوره 2 شماره
صفحات -
تاریخ انتشار 2009